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Resolution and Electronic
Noise

Resolution: the ability to
distinguish signal levels

1. Why?

a) Recognize structure in amplitude
spectra

Comparison between NaI(Tl)
and Ge detectors

(J.Cl. Philippot, IEEE Trans. Nucl. Sci. NS-17/3
(1970) 446)
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b) Improve sensitivity

Signal to background ratio improves with better
resolution

(signal counts in fewer bins compete with fewer
background counts)

G.A. Armantrout et al., IEEE Trans. Nucl. Sci. NS-19/1 (1972) 107 240 300 360 420
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1. What determines Resolution?

1. Signal Variance >> Baseline Variance

⇒ Electronic (baseline) noise not important

Examples: • High-gain proportional chambers

• Scintillation Counters with High-Gain PMTs

e.g. 1 MeV γ-rays absorbed by NaI(Tl) crystal

Number of photoelectrons: Npe ≈ 8.104 [MeV-1] × Eγ × QE ≈ 2.4.104

Variance typically: σpe = Npe
1/2 ≈ 160 and σpe / Npe ≈ 5 - 8%

Signal at PMT anode (assume Gain= 104): Qsig= GPMT Npe ≈ 2.4.108 el and
σsig= GPMT σpe ≈ 1.2.107 el

whereas electronic noise easily < 104 el

BASELINE BASELINE BASELINE

SIGNAL BASELINE NOISE SIGNAL + NOISE∗
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2. Signal Variance << Baseline Variance

⇒ Electronic (baseline) noise critical for resolution

Examples: • Gaseous ionization chambers (no internal gain)

• Semiconductor detectors

e.g. in Si : Number of electron-hole pairs
3.6 eV

dep
ep

E
N =

Variance ep epF Nσ = ⋅ (where F= Fano factor ≈ 0.1)

For 50 keV photons: σ ep ≈ 40 el ⇒ σ ep / Nep = 7.5.10-4

Obtainable noise levels are 10 to 1000 el.

BASELINE BASELINE BASELINE

SIGNAL BASELINE NOISE SIGNAL + NOISE∗
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Baseline fluctuations can have many origins ...

pickup of external interference

artifacts due to imperfect electronics

… etc.,

but the (practical) fundamental limit is electronic noise.
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2. Basic Noise Mechanisms and Characteristics

Consider n carriers of charge e moving with a velocity v through a sample of length l. The induced
current i at the ends of the sample is

n e vi
l

=

The fluctuation of this current is given by the total differential
2 2

2 ne evdi dv dn
l l

   = +   
   

,

where the two terms are added in quadrature since they are statistically uncorrelated.

Two mechanisms contribute to the total noise:

• velocity fluctuations, e.g. thermal noise

• number fluctuations, e.g. shot noise
excess or “1/ f “ noise

Thermal noise and shot noise are both “white” noise sources, i.e.

power per unit bandwidth (≡ spectral density) is constant: .noisedP const
df

=
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1. Thermal Noise in Resistors

The most common example of noise due to velocity fluctuations is the thermal noise of resistors.

Spectral noise power density vs. frequency f : 4noisedP kT
df

= k = Boltzmann constant

T = absolute temperature

since
2

2VP I R
R

= = R = DC resistance

the spectral noise voltage density
2

2 4noise
n

dV e kTR
df

≡ =

and the spectral noise current density
2

2 4noise
n

dI kTi
df R

≡ =

The total noise depends on the bandwidth of the system,
For example, the total noise voltage at the output of a voltage amplifier with the frequency
dependent gain ( )vA f is

2 2 2

0
( )on n vv e A f df

∞

= ∫
Note: Since spectral noise components are not correlated, one must integrate over the noise

power.
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Total noise increases with bandwidth

Total noise is the integral over
the shaded region.

S/N increases as noise bandwidth
is reduced until signal components
are attenuated significantly.

log ff

log f

log f

SIGNAL

NOISE

u
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2. Shot noise

A common example of noise due to number fluctuations is “shot noise”,
which occurs whenever carriers are injected into a sample volume
independently of one another.

Example: current flow in a semiconductor diode
(emission over a barrier)

Spectral noise current density: 2 2ni eI= e = electronic charge
I = DC current

A more intuitive interpretation of this expression will be given later.

Note: Shot noise does not occur in “ohmic” conductors. Since the number of available charges
is not limited, the fields caused by local fluctuations in the charge density draw in
additional carriers to equalize the total number.
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Noise Spectral Densities

Spectral Density of Thermal Noise (Johnson Noise)

Two approaches can be used to derive the spectral distribution of thermal noise.

1. The thermal velocity distribution of the charge carriers is used to calculate the time dependence of the
induced current, which is then transformed into the frequency domain.

2. Application of Planck’s theory of black body radiation.

The first approach clearly shows the underlying physics, whereas the second “hides” the physics by
applying a general result of statistical mechnics. However, the first requires some advanced concepts
that go well beyond the standard curriculum, so the “black body” approach will be used.

In Planck’s theory of black body radiation the energy per mode

/ 1h kT
hE

e ν

ν
=

−
and the spectral density of the radiated power

/ 1h kT
dP h
d e ν

ν
ν

=
−

i.e. this is the power that can be extracted in equilibrium.
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At low frequencies h kTν � : ,
1 1

dP h kT
hd
kT

ν
νν

≈ =
 + − 
 

so at low frequencies the spectral density is independent of frequency and for a total bandwidth B the
noise power that can be transferred to an external device

nP kTB= .

To apply this result to the noise of a resistor, consider a resistor R whose thermal noise gives rise to a
noise voltage Vn . To determine the power transferred to an external device consider the circuit

The dotted box encloses the equivalent circuit of the resistive noise source.

R
R

V

I

L

n

n
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The power dissipated in the load resistor LR

2 2
2

2( )
nL n L

n L
L L

V V RI R
R R R

= =
+

The maximum power transfer occurs when the load resistance equals the source resistance RT = R, so

2
2

4
n

nL
VV = .

Since the maximum power that can be transferred to RL is kTB ,

2 2

2
4

4

nL n

n
n

V V kTB
R R

VP kTB
R

= =

= =

and the spectral density of the noise power in the resistor

4ndP kT
dν

= .
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Spectral Density of Shot Noise

If an excess electron is injected into a device, it forms a current pulse of duration τ. In a thermionic diode
τ is the transit time from cathode to anode, for example. In a semiconductor diode τ is the recombination
time. If these times are short with respect to the periods of interest 1/ fτ � , the current pulse can be
represented by a δ pulse. The Fourier transform of a delta pulse yields a “white” spectrum, i.e. the
amplitude distribution in frequency is uniform

, 2n pk
e

dI
q

df
=

Within an infinitesimally narrow frequency band the individual spectral components are pure sinusoids,
so their rms value

2 2
2

n e
n e

dI qi q
df

≡ = =

If N electrons are emitted at the same average rate, but at different times, they will have the same
spectral distribution, but the coefficients will differ in phase. For example, for two currents ip and iq with a
relative phase ϕ the total rms current

( )( )2 2 2 2 cosi i
p q p q p q p qi i i e i i e i i i iϕ ϕ ϕ−= + + = + +
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For a random phase the third term averages to zero
2 2 2 ,p qi i i= +

so if N electrons are randomly emitted per unit time, the individual spectral components simply add in
quadrature

2 22n ei Nq=

The average current ,eI Nq=

so the spectral noise density
2

2 2n
n e

dIi q I
df

≡ = .
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Another derivation utilizes Carson’s theorem.

If a single pulse has the amplitude ( )A t and its Fourier transform

( ) ( )exp( )P f A t t dtω
∞

−∞

= −∫ i ,

then a random sequence of pulses occurring at a rate r has the spectral power distribution

2( ) 2 ( )S f r P f= .

Shot noise can be represented as a sequence of delta pulses, whose spectrum is white, so the pulse sequence
also has a white spectrum.

Since the rate / er I q= , the spectral density of shot noise

2 2n ei q I=

⇒ The spectral distribution of a DC signal carries information of the signal’s origin.
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Low Frequency Noise
In a semiconductor, for example, charge can be trapped and then released after a characteristic lifetime τ.
The spectral density for a single lifetime

2( ) .
1 (2 )

S f
f

τ
π τ

∝
+

For 2 1fπ τ � : 2
1( ) .S f
f

∝

However,
several traps with different time constants
can yield a “1/f “ distribution:
Traps with three time constants of
0.01, 0.1 and 1 s yield a 1/f distribution
over two decades in frequency.

Low frequency noise is ubiquitous – must not
have 1/f dependence, but commonly called 1/f
noise.

Spectral power density:
1noisedP

df f α
= (typically α= 0.5 – 2)

0.001 0.01 0.1 1 10 100
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Noise Bandwidth vs. Signal Bandwidth

Consider an amplifier with the frequency response ( )A f . This can be rewritten 0( ) ( )A f A G f≡ ,
where 0A is the maximum gain and ( )G f describes the frequency response.

For example, for the simple amplifier described above
11 1

1v m o m L
L L o

A g C g R
R R C

ω
ω

−
 

= + =  + 
i

i

and using the above convention 0
1and ( )

1 (2 )m L
L o

A g R G f
f R Cπ

≡ ≡
+ i

If a “white” noise source with spectral density eni is present at the input, the total noise voltage at the
output is

22 2
0 0 0

0 0
( ) ( )no ni ni ni nv e A G f df e A G f df e A f

∞ ∞

= = ≡ ∆∫ ∫

∆fn is the “noise bandwidth”.
Note that, in general, the noise bandwidth and the signal bandwidth are not the same.
If the upper cutoff frequency is determined by a single RC time constant, as in the “simple amplifier”,

the signal bandwidth
1

2s uf f
RCπ

∆ = = and the noise bandwidth
1

4 2n uf f
RC

π
∆ = = .
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Noise Bandwidth and Low Frequency (1/f) Noise

For a spectral noise density

f
nf

S
P

f
=

and a corresponding voltage density

2 f
nf

A
e

f
=

the total noise integrated in a frequency band f1 to f1 is

2

1

2 2

1
log

f
f

nf f
f

A fv df A
f f

 
= =  

 
∫

Thus, for a 1/f spectrum the total noise depends on the ratio of the upper to lower cutoff frequency.

Since this is a power distribution, the voltage or current spectral density changes 10-fold over a 100-fold
span in frequency.

Frequently, the 1/f noise corner is specified: frequency where 1/f noise intercepts white noise.
Higher white noise level reduces corner frequency, so lower noise corner does not equate to lower 1/f
noise.
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Independent noise contributions add in quadrature (additive in noise power)

2
,n tot ni

i
v v= ∑

Both thermal and shot noise are purely
random.

⇒ amplitude distribution is
Gaussian

⇒ noise modulates baseline

⇒ baseline fluctuations
superimposed on signal

⇒ output signal has Gaussian
distribution

Measuring Resolution
Inject an input signal with known
charge using a pulse generator set
to approximate the detector signal shape
(possible ballistic deficit).
Measure the pulse height spectrum. peak centroid ⇒ signal magnitude

peak width ⇒ noise (FWHM= 2.35 rms)
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“Noiseless” Resistances

a) Dynamic Resistance

In many instances a resistance is formed by the slope of a device’s current-voltage characteristic, rather
than by a static ensemble of electrons agitated by thermal energy.

Example: forward-biased semiconductor diode

Diode current vs. voltage /
0( 1)eq V kTI I e= −

The differential resistance d
e

dV kTr
dI q I

= =

i.e. at a given current the diode presents a resistance, e.g. 26 Ω at I = 1 mA and T = 300 K.

Note that two diodes can have different charge carrier concentrations, but will still exhibit the same
dynamic resistance at a given current, so the dynamic resistance is not uniquely determined by the
number of carriers, as in a resistor.

There is no thermal noise associated with this “dynamic” resistance, although the current flow carries
shot noise.
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b) Radiation Resistance of an Antenna

Consider a receiving antenna with the normalized power pattern θ φ( , )nP pointing at a brightness
distribution θ φ( , )B in the sky. The power per unit bandwidth received by the antenna

( , ) ( , )
2

e
n

Aw B P dθ φ θ φ= Ω∫∫

where eA is the effective aperture, i.e. the “capture area” of the antenna. For a given field strength E, the
captured power ∝ eW EA .

If the brightness distribution is from a black body radiator and we’re measuring in the Rayleigh-Jeans
regime,

2
2( , ) kTB θ φ
λ

=

and the power received by the antenna

2 .e A
kTw A
λ

= Ω

ΩA is the beam solid angle of the antenna (measured in rad2), i.e. the angle through which all the power
would flow if the antenna pattern were uniform over its beamwidth.
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Since λΩ = 2
e AA (see antenna textbooks), the received power

w kT=

The received power is independent of the radiation resistance, as would be expected for thermal noise.

However, it is not determined by the temperature of the antenna, but by the temperature of the sky the
antenna pattern is subtending.

For example, for a region dominated by the CMB, the measured power corresponds to a resistor at a
temperature of ~3K, although the antenna may be at 300K.

c) Active Resistances

As derived in Chapter II, the input impedance of a charge-sensitive amplifier at high frequencies appears
resistive.

The resistive component is the result of a (noiseless) feedback component – the feedback capacitor –
the amplifier’s gain and phase shift.

If as a thought experiment a noiseless amplifier is used, the input will present a noiseless resistance.

In practice, it is possible to synthesize resistances iR with noise less than 2 4nR ie kTR=
(“cooled resistance”).
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Correlated Noise

Generally, noise power is additive.: , 1 1 ...n tot n nP P P= + +

However, in a coherent system (i.e. a system that preserves phase), the power often results from the
sum of voltages or currents, which is sensitive to relative phase.

For two correlated noise sources 1N and 2N the total noise

2 2
1 2 1 22N N N CN N= + +

where the correlation coefficient C can range from –1 (anti-correlated, i.e. identical, but 180° out of
phase) to +1 (fully correlated).

For uncorrelated noise components 0C = and then individual current or voltage noise contributions add
in quadrature, e.g.

2
,n tot ni

i
V V= ∑
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4. Noise in Amplifiers

Consider a chain of two amplifiers (or amplifying
devices), with gains A1 and A1, and input noise
levels N1 and N2 .

A signal S is applied to the first amplifier, so the
input signal-to-noise ratio is 1/S N .

At the output of the first amplifier the signal is A1S and the noise A1N.
Both are amplified by the second amplifier, but in addition the second amplifier contributes its noise, so
the signal-to-noise ratio at the output of the second amplifier

( )
( ) ( )

22 2
1 2
2 2 2

1 1 2 2 2 2 2
1

1
22

2
1 2

1 1

1

1

SA AS S
N N A A N A NN

A

S S
N N N

A N

  = = 
  +  

+  
 

   =   
    

+  
 

The overall sign-to-noise ratio is reduced, but the noise contribution from the second-stage can be
negligible, provided the gain of the first stage is sufficiently high.

⇒ In a well-designed system the noise is dominated by the first gain stage.

A
N N

A1
1 2

2
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Amplifier Noise Model

The noise properties of any amplifier can be described fully in terms of a

• voltage noise source

and

• current noise source.

at the amplifier input. Typical magnitudes are
nV / Hz and fA ... pA / Hz .

Here the magnitude of the noise sources is characterized by the spectral density

The noise sources do not have to physically present at the input. Noise also originates within the
amplifier. Assume that at the output the combined contribution of all internal noise sources has the
spectral density noe . If the amplifier has a voltage gain VA , this is equivalent to a voltage noise source at
the input = /n no Ve e A .

It is convenient to express the input noise in terms of spectral density, so that the effect of amplifier
bandwidth can be assessed separately.

e

i

n

n
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Assume that a sensor with resistance SR is connected to an amplifier with voltage gain VA and an
infinite input resistance, so no current flows into the amplifier.

The input noise current ni flows through the source resistance SR to yield a noise voltage n Si R , which
adds to the thermal noise of the source resistance and the noise voltage of the amplifier.
All terms add in quadrature, since they are not correlated.

The total noise voltage at the input of the amplifier ( )22 24ni S n n Se kTR e i R= + +

and at the output of the amplifier ( )22 2 2 2( ) 4no V ni V S n n Se A e A kTR e i R = = + + 

The signal-to-noise ratio at the amplifier output
( )

  =     + + 

2 2 2

22 24
V S

V S n n S

S A V
N A kTR e i R

is independent of the amplifier gain and equal to the input S/N, as both the input noise and the signal are
amplified by the same amount.

eR 4kTR

AiV e
e

nS S

VnS ni

no
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In the preceding example the amplifier had an infinite input resistance, so no current flowed into the
amplifier. Is the signal-to-noise ratio affected by a finite input resistance?

The signal at the input of the amplifier i
Si S

S i

RV V
R R

=
+

The noise voltage at the input of the amplifier ( )
2 2

2 2 24 i i S
ni S n n

i S i S

R R Re kTR e i
R R R R
   

= + +   + +   

where the bracket in the 2
ni represents the parallel combination of iR and SR .

eR 4kTR

RiV e
e

nS S

inS ni

no
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The signal-to-noise ratio at the output of the amplifier

( )

( )

2
2

2 2 2

2 22 2
2 2

2 2

2 2 2

4

,
4

i
S

S iV Si

V ni i i S
S n n

i S i S

S

S n n S

RV
R RA VS

N A e R R RkTR e i
R R R R

VS
N kTR e i R

 
 +   = = 

     
+ +   + +   

  =  + + 

is the same as for an infinite input resistance.

This result also hold for a complex input impedance, i.e. a combination of resistive and capacitive or
inductive components.

⇒ S/N independent of amplifier input impedance.

The noise sources can be correlated, for example 2 2 2
1 2 1 22n n n n ne e e Ce e= + +

Then, in the above example, if the input noise voltage and current are correlated, the input noise voltage

2 2 24 2ni S n n n n Se kTR e i Ce i R= + + +
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The total noise at the output is obtained by integrating over the spectral noise power 2( ) ( )n noP f e f∝ .

The frequency distribution of the noise is determined both by the spectral distribution of the input noise
voltage and current and by the frequency response of the amplifier.

22 2 2

0 0
( ) ( )no no ni Vv e f df e f A df

∞ ∞

= =∫ ∫

The amplifier gain factor is shown as magnitude squared, as in general the amplifier has a frequency-
dependent gain and phase, so it is a complex number.
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Amplifier Noise Matching

The current noise contribution of the
amplifier depends on the source
resistance

( )22 24ni S n n Se kTR e i R= + +

Consider the total noise power in the input circuit. The source resistance contributes 4 nkT f∆ and the
power due to the amplifier’s input noise voltage and current depends on the source resistance.

2
24 n

n n S n
S

eP kT i R f
R

 
= + + ∆ 
 

The total power attains a minimum for n
S

n

eR
i

=

This condition does not depend on the source contributing noise, so it is determined by the properties of
the amplifier alone.

Note that this derivation assumes a real (rather than a reactive) source, since for a capacitive or
inductive source the phase difference between current and voltage yields zero power.
In certain cases this matching condition does apply to capacitive or inductive sources, but for other
reasons.

eR 4kTR

AiV e
e

nS S

VnS ni

no
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A common measure of amplifier noise is the “Noise Factor” F, which is the ratio of the total noise to the
thermal noise of the sensor.

( )222 2 2

1 1
4 4 4 4

n n Sni n n S

S S S

e i Re e i RF
kTR kTR kTR kT

+
= = + = + +

The noise factor assumes a minimum when ,n
S

n

eR
i

=

which minimizes the total noise power as shown above.

The noise factor is frequently expressed in dB as the “Noise Figure”

1010logNF F= .

In a matched system with a resistive source

1
2

n n
opt

e iF
kT

= +
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This principle of “noise matching” must be applied with caution.

1. Power is not always the relevant measure.

Sometimes the noise voltage is most important. Minimum noise voltage nie always obtains with
= 0SR .

2. Merely increasing the source resistance will increase the total input noise nie without improving the
signal-to-noise ratio. The advantage of noise matching only obtains when both the signal and the
effective source resistance are modified simultaneously, for example by a transformer.
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Noise matching with a transformer

The sensor is coupled to the amplifier through a transformer with the turns ratio = /S PN N N .

Assume unity coupling in the transformer. Then the sensor voltage appearing at the secondary

SS SV NV=

The thermal noise of the sensor at the secondary
2 24nSS Se N kTR=

Because the transformer also converts impedances, the source resistance appears at the secondary as
2

SS SR N R=

eR

N N

4kTR

AiV e
e

nS

P S

S

VnS ni

no
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Thus, the signal is increased, but so is the noise contribution due to the input noise current.

2 2 2 2 4 24ni S n S ne kTR N e R N i= + +

and the signal-to-noise ratio

2 2 2 2

22 2 2 4 2
2 2 2

2

,
4 4

S S

nS n S n
S S n

V N VS
eN kTR N e R N i kTR N R i
N

  = =  + +  + +

which attains a maximum for
2 n

S
n

eR N
i

= .
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Other Noise Measures

Besides the noise factor or noise figure discussed above, other noise measures are used that are more
appropriate to other applications.

a) Noise Resistance

The noise resistance is equal to the resistance whose thermal noise is equal to the noise of the amplifier

2 2 24 ,n n n SkTR e i R= +
so

2 2 2

.
4

n n S
n

e i RR
kT

+
=

b) Noise Temperature

The noise temperature is the temperature for which the thermal noise of the source resistance is equal
to the amplifier noise

2 2 2

2 2

4

4 4

n n S
n

S

n n S
n

S

e i RT
kR

e i RT
kR k

+
=

= +
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Minimum noise temperature obtains when

2 2

4 4

.

n n S

S

n
S

n

e i R
kR k

eR
i

=

=

Then
2 2

4 4

2

n n n n
N

n n

n n
N

e i i eT
k e k i

e iT
k

= +

=

For a sensor at temperature ST matched to an amplifier with noise temperature NT , the total noise
voltage

( )

2
,

2
,

4 4
4 ,

n tot S S N S

n tot S N S

e kT R kT R
e k T T R

= +

= +

i.e. the noise temperatures add.
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c) Noise Energy

The optimum noise temperature translates directly to the concept of noise energy as a measure of low-
noise amplifying devices.

n n nE e i=

Examples:

Bipolar transistor 2110 JnE −�

Field Effect Transistors 23 2410 10 JnE − −−�

SQUID 2510 JnE −� at 1 MHz and 4K
2810 JnE −� at 1 kHz and 4K

The noise energy is an indicator of the potential noise performance of a device – exploiting it, however,
depends on the practicality of noise matching. In FETs, for example, this is only possible in special
cases.
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d) Signal Equivalent Noise Measures

It is often convenient to express the noise level in terms of the signal quantity of interest.

1. Noise Equivalent Power

For example, in a system that measures power, one can express the noise in terms of Noise Equivalent
Power (NEP), which is equal to the signal input power for which the signal-to-noise ratio is one.

If the signal-to-noise ratio S/N is known for a given input power signalP

( / )
signalP

NEP
S N

=

or, if the noise current is and the responsivity are known

[ ]
Noise Current A/ Hz

Current Responsivity A/W
NEP

 
 =
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2. Equivalent Noise Charge

Similarly, detector readout systems that measure signal charge can be characterized in terms of
Equivalent Noise Charge, i.e the signal charge that yields a signal-to-noise ratio of one.

For a given detector material, the signal charge can be translated into absorber energy, so the noise can
be express in terms of energy, i.e. eV or keV.

For an ionization energy iE

n iE E ENC∆ = ⋅
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Continuous Signals vs. Individual Pulses

Consider a semiconductor detector detecting visible light.
At low intensities, where the mean time between successive photons is much longer than the collection
time, the detector signal consists of individual pulses.

As the light intensity increases, so does the photon rate. At some point the signals from individual
photons overlap and the detector output appears as a continuous current.

The average current of a sequence of pulses ( )i t of duration T occurring at a rate R

( )avi R i t dt= ∫
If each individual pulse has a DC component, the DC component of the pulse train will grow as the rate
increases.

Each individual pulse has a characteristic Fourier spectrum. Since this is a linear superposition process,
the sum of all pulses has the same frequency spectrum as an individual pulse.

⇒ signal-to-noise can be analyzed using either pulses or continuous signals.

If a filter is chosen to optimize the signal-to-noise ratio for a single pulse, it will also optimize S/N at
high rates.

However, the need to resolve individual pulses or measure their amplitude accurately adds an
additional constraint that modifies the choice of filter at high rates.
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S/N with Capacitive Signal Sources

C Cd d

AMPLIFIER
i

i

sig

sig

i v(t) (t)s s RR ii

DETECTOR

DETECTOR AMPLIFIER EQUIVALENT CIRCUIT
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Equivalent Circuit

↑ ↑
charges moving in detector capacitance
detector induce change discharges into amplifier
of charge on detector
electrodes

The speed of the amplifier does not have to match the speed of the sensor signal.

Initially charge is integrated on the sensor capacitance.

As the amplifier responds, the signal is transferred to the amplifier.

DETECTOR

C R

AMPLIFIER

i v

i

s indet

in
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Assume an amplifier with constant noise. Then signal-to-noise ratio
(and the equivalent noise charge) depend on the signal magnitude.

The pulse shape registered by amplifier depends on the input time constant RCdet.

Assume a rectangular detector current pulse of duration T and magnitude Is.

Equivalent circuit

Input current to amplifier

( )
( )

/

/ /

0 : ( ) 1

: ( ) 1

t RC
in s

T RC t RC
in s

t T i t I e

T t i t I e e

−

−

≤ < = −

≤ ≤ ∞ = − ⋅

DETECTOR

C R

AMPLIFIER

i v

i

s in

in
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At short time constants RC T�
the amplifier pulse approximately
follows the detector current pulse.

As the input time constant RC
increases, the amplifier signal
becomes longer and the peak
amplitude decreases, although
the integral, i.e. the signal charge,
remains the same.
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At long time constants the detector signal current is integrated on
the detector capacitance and the resulting voltage sensed by the amplifier

Then the peak amplifier signal is inversely proportional to the total capacitance at the input, i.e. the
sum of

detector capacitance,
input capacitance of the amplifier, and
stray capacitances.

C
dti

C
QV s

in
∫== det
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Maximum signal vs. capacitance

At small time constants the amplifier signal approximates the detector current pulse and is independent
of capacitance.

At large input time constants (RC/T > 5) the maximum signal falls linearly with capacitance.

⇒ For input time constants large compared to the detector pulse duration the signal-to-noise ratio
decreases with detector capacitance.

Caution when extrapolating to smaller capacitances:
If S/N = 1 at RC/T = 100, decreasing the capacitance to 1/10 of its original value (RC/T = 10),
increases S/N to 10. However, if initially RC/T = 1, the same 10-fold reduction in capacitance (to
RC/T = 0.1) only yields S/N = 1.6.
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Charge-Sensitive Preamplifier – Noise vs. Detector Capacitance

In a voltage-sensitive preamplifier

• noise voltage at the output is essentially independent of detector capacitance,

i.e. the equivalent input noise voltage /ni no vv v A= .

• input signal decreases with increasing input capacitance, so signal-to-noise ratio depends on
detector capacitance.

In a charge-sensitive preamplifier, the signal at the amplifier output is independent of detector
capacitance (if i dC C� ).

What is the noise behavior?

• Noise appearing at the output of the preamplifier is fed back to the input, decreasing the output
noise from the open-loop value no ni vv v A= .

• The magnitude of the feedback depends on the shunt impedance at the input, i.e. the detector
capacitance.

Note, that although specified as an equivalent input noise, the dominant noise sources are typically
internal to the amplifier. Only in a fed-back configuration is some of this noise actually present at
the input. In other words, the primary noise signal is not a physical charge (or voltage) at the
amplifier input, to which the loop responds in the same manner as to a detector signal.

⇒ S/N at the amplifier output depends on feedback.
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Noise in charge-sensitive preamplifiers

Start with an output noise voltage nov , which is fed back to the input through the capacitive voltage
divider Cf – Cd.

1 1

1

1

f d

d

C C f d
no ni ni

C

d

d
no ni

f

X X C C
v v v

X
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Cv v
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ω ω

ω

+
+

= =

 
= +  
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Equivalent input noise charge

( )

no
ni no f

Q

ni ni d f

vQ v C
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Q v C C

= =
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Signal-to-noise ratio
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( )
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ni ni d f ni
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= =
+

Same result as for voltage-sensitive amplifier, but here • the signal is constant and
• the noise grows with increasing C.

v v

C

A

C ni no

f

d

DETECTOR

Zi =



Radiation Detectors and Signal Processing - III. Electronic Noise Helmuth Spieler
Oct. 10 – Oct. 14, 2005; Univ. Heidelberg LBNL

50

As shown previously, the pulse rise time at the amplifier output also
increases with total capacitive input load C, because of reduced feedback.

In contrast, the rise time of a voltage sensitive amplifier is not affected by the input capacitance,
although the equivalent noise charge increases with C just as for the charge-sensitive amplifier.

Conclusion

In general

• optimum S/N is independent of whether the voltage,
current, or charge signal is sensed.

• S/N cannot be iimmpprroovveedd by feedback.

Practical considerations, i.e. type of detector, amplifier technology, can favor one configuration over the
other.
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Strip Detector Model for Noise Simulations

Noise coupled from neighbor channels.
Analyze signal and noise in center
channel.

Includes:
a) Noise contributions from neighbor

channels
b) Signal transfer to neighbor channels
c) Noise from distributed strip resistance
d) Full SPICE model of preamplifier

See Spieler, Semiconductor Detector Systems
for discussion of noise cross-coupling

Measured Noise of Module:

p-strips on n-bulk, BJT input transistor

Simulation Results: 1460 el (150 µA)

1230 el (300 µA)

⇒ Noise can be predicted with good accuracy.
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Quantum Noise Limits in Amplifiers

What is the lower limit to electronic noise?

Can it be eliminated altogether, for example by using superconductors and eliminating devices that carry
shot noise?

Starting point is the uncertainty relationship

2
E t∆ ∆ ≥

�

Consider a narrow frequency band at frequency ω. The energy uncertainty can be given in terms of the
uncertainty in the number of signal quanta

E nω∆ = ∆�

and the time uncertainty in terms of phase

,t ϕ
ω
∆

∆ =

so that
1
2

nϕ∆ ∆ ≥

We assume that the distributions in number and phase are Gaussian, so that the equality holds.
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Assume a noiseless amplifier with gain G, so that 1n quanta at the input yield

2 1n Gn=
quanta at the output.

Furthermore, the phase at the output ϕ2 is shifted by a constant relative to the input.

Then the output must also obey the relationship 2 2
1
2

nϕ∆ ∆ =

However, since ∆ = ∆2 1n G n and ϕ ϕ∆ = ∆2 1 :

1 1
1 ,

2
n

G
ϕ∆ ∆ =

which is smaller than allowed by the uncertainty principle.
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This contradiction can only be avoided by assuming that the amplifier introduces noise per unit
bandwidth of

( 1) ,nodP G
d

ω
ω

= − �

which, referred to the input, is
11nidP

d G
ω

ω
 = − 
 

�

If the noise from the following gain stages is to be small, the gain of the first stage must be large, and
then the minimum noise of the amplifier

nidP
d

ω
ω

= �

At 2 mm wavelength the minimum noise corresponds to about 7K.

This minimum noise limit applies to phase-coherent systems. In systems where the phase information is
lost, e.g. bolometers, this limit does not apply.

For a detailed discussion see C.M. Caves, Phys. Rev. D 26 (1982) 1817-1839
H.A. Haus and J.A. Mullen, Phys. Rev. 128 (1962) 2407-2413


